Question		on	Expected Answers		Guidance
1	(a)	(i)	Two equal but opposite forces	B1	
		(ii)	torque = one of the forces × <u>perpendicular</u> distance between the forces	B1	Use tick or cross on Scoris
	(b)	(i)	It will rotate / spin / turn Rotation is clockwise / (continue) to travel from left to right/ the rotational speed increases (with time)	B1 B1	
		(ii)	It will accelerate	B1	Allow: 'speed up' / 'speed increases' / 'velocity increases' / 'move faster'
			The idea that acceleration is to the right / Suggestion that satellite will 'turn'	B1	
			Total	6	

Question		on	Expected Answers	Marks	Additional Guidance
2	a		density = mass/volume or 'density is mass <u>per</u> (unit) volume'	B1	Allow: $\rho = \frac{M}{V}$, where $M = \text{mass and } V = \text{volume}$ Not: mass per m ³
	b	i	Dramatic change(s) in <u>density</u> (at 3.0 Mm and 5.1 Mm) (AW)	B1	Not : There are three (distinct) layers / Each layer has different density
		ii	mass = $0.18 \times 6.0 \times 10^{24}$ (= 1.08×10^{24} kg) or radius = 1.3×10^{6} (m)	C1	Note : The first C1 mark is for determining the mass or the radius of core
			volume = $\frac{4}{3}\pi \times (1.3 \times 10^6)^3$		
			density = $\frac{1.03 \times 10}{9.20 \times 10^{18}}$	C1	Possible 10 ^e errors
			density = 1.2×10^5 (kg m ⁻³)	A1	Bald answer of 1.2×10^5 (kg m ⁻³) or 1.17×10^5 (kg m ⁻³) scores 3 marks
					Allow: 2 marks for $\frac{6.0 \times 10^{24}}{9.20 \times 10^{18}} = 6.5 \times 10^5$ (factor of 0.18 missed out)
					Note: The <u>last two</u> C1 and A1 marks cannot be scored if incorrect radius 1.08×10^{24}
					is used. Hence no further marks for $\frac{1.00 \times 10}{\frac{4}{3}\pi \times (6.4 \times 10^6)^3}$ or
					$\frac{1.08 \times 10^{24}}{\frac{4}{3}\pi \times (5.1 \times 10^6)^3}, \text{ etc}$
			Total	5	

Question		ion	Expected Answers	Marks	Additional Guidance
3	a		Any <u>two</u> from: • area • speed / velocity • viscosity (of air) (torreport up (density)	B1×2	Not: shape / size
			 viscosity (of all) / temperature / density (surface) texture / 'aerodynamic' (shape) 		Allow: 'streamlining'
	b	i	Correct <u>directions</u> of arrows <i>W</i> and <i>D</i>	B1	Award the mark for two arrows in opposite directions as long as <u>one</u> of them is labelled
		ii	weight = 75×9.81		Reminder : weight can be quoted to more than 2 sf (e.g: 735.75)
			weight = 736 (N) or 740 (N)	B1	Not : '75 \times 10 = 750 N'
		iii	$D = 0.30 \times 20^2 (= 120 \text{ N})$	C1	
			736 - 120 = 75a	C1	
			$a = 8.2 \text{ (m s}^{-2})$	A1	Allow: Answer to 2sf or more Bald answer of 8.2 or 8.21 scores 3 marks Note: Using 740 (N) gives an answer 8.3 (m s ⁻²)
		iv	(<i>D</i> and <i>W</i> are) equal	B1	Not: <i>D</i> and <i>W</i> are 'balanced/equilibrium'
		V	drag = weight		
			$736 = 0.30 \times v^2$	C1	
			$v = 49.5 \text{ (m s}^{-1}) \text{ or } 50 \text{ (m s}^{-1})$	A1	Bald answer of 49.5 (m s ⁻¹) or 50 (m s ⁻¹) scores 2 marks
			Total	10	

4	Expected Answers	Marks	Additional Guidance
а	The (net) <u>force</u> (is a newton) when a 1 kg mass has	B1	Not: $1 \text{ N} = 1 \text{ kg m s}^{-2}$ because this is too brief for a definition
	acceleration of 1 m s^{-2}		
			2
b(i)	weight = $1.9 \times 10^{\circ} \times 9.81$		Allow: 9.8 (m s ⁻²) for g but not 10 (m s ⁻²)
	weight = 1.86×10^7 (N)	B1	Allow: A bald answer of 1.9×10^7 N, but not if 10 (m s ⁻²) is seen
b(ii)	net force = 1.24×10^7 (N) or 1.2×10^7 (N)	C1	Allow : The C1 mark for "(net force) = $(3.1 - 1.86) \times 10^7$ (N)"
	$a = \frac{F}{m} = \frac{1.24 \times 10^7}{1.9 \times 10^6}$ acceleration = 6.53 (m s ⁻²) or 6.5 (m s ⁻²)	A1	Allow: 2 marks for a bald answer Allow: Answer of 6.3 (m s ⁻²) if 1.9×10^7 (N) is used for weight or net force of 1.2×10^7 (N) is used Allow: 1 mark for ' $3.1 \times 10^7/1.9 \times 10^6 = 16.3$ ' Not: ' $1.86 \times 10^7/1.9 \times 10^6 = 9.8$ '
b(iii)	The mass / weight (of spaceship) decreases (as it	B1	Allow: 'g' / acceleration of free fall / gravitational field strength
	loses fuel)		decreases (but not gravity decreases)
			Not : 'less drag / air resistance'
	Total	5	

5	Expected Answers	Marks	Additional Guidance
а	The distance travelled (by the car) whilst the brakes are applied and the car stops (wtte)	B1	Note: The answer must have reference to car stopping
b	Any <u>two</u> factors from: mass, brakes, tyres / tread, road (surface) and 'slope' of road	B1×2	Must use ticks on Scoris to show where the marks are awarded
	 Correct description for each factor; see below: 1. Greater mass increases distance / distance ∞ mass 2. Worn brakes increases distance 3. Bald tyres increases distance (when wet) 4. Wet / icy /gravel road increases distance 5. An uphill road will decrease the distance (ora) 	B1×2	 Allow: Reference to just 'distance' since 'braking distance' is in the question Note: For point 3, allow 'less tread increases (braking) distance (when wet)'.
C	 Any <u>three</u> from: 1. Prevent collision with steering wheel / windscreen /dashboard 2. Time for stopping is more / distance for stopping is more / seat belt 'stretches' 3. Smaller deceleration / acceleration (of person) 4. Reference to '<i>KE</i> = <i>Fs</i> ' or '¹/₂<i>mv</i>² = <i>Fs</i> ' 	B1×3	Must use ticks on Scoris to show where the marks are awarded Allow: Smaller 'rate of change of momentum' for the third B1 point Not: Less pressure (on driver because of larger area of belt)

5	Expected Answers	Marks	Additional Guidance
d(i)1	thinking distance = 0.50×20 thinking distance = 10 (m)	B1	
d(i)2	braking distance = 30 (m)	C1	
	stopping distance = $(30 + 10 =) 40 \text{ (m)}$	A1	Allow: 2 marks for a bald answer of 40 (m) Allow: 1 mark for 'answer to $(\mathbf{d})(\mathbf{i})1$ + candidate's braking distance' if braking distance $\neq 30$ (m) Possible ecf from $(\mathbf{d})(\mathbf{i})1$
d(ii)	$\frac{s}{32^2} = \frac{30}{20^2} / k = 0.075' / k = 13.3'$	C1	Allow : For the C1 any other equivalent and correct substitution into similar equation
	(distance =) 77 (m)	A1	Allow : An answer in the range 76 - 78. Note bald answer in this range can score 2 marks
	Or		
	At speed of 16 (m s ⁻¹), distance = 19 (m)	C1	Allow : distance in the range 19 to 19.5 (m) Possible ecf
	(distance = $2^2 \times 19$ =) 76 (m)	A1	
	Total	13	

6	Expected Answers	Marks	Additional Guidance
a(i)	torque = 4.0×0.03	C1	
	torque = 0.12 (N m)	A1	Note: An answer of 12 scores 1 mark (because cm not converted into m) Allow: Full marks for if the centi prefix added; that is 12 N <u>cm</u> Allow: 2 marks for a bald 0.12 (N m)
a(ii)			Condone the use of 'N cm' in a(ii)
	(total moment =) $(x + 0.03) \times 4.0 - 4.0x$ (total) moment = 0.12 (N m)	M1 A1	Allow: Equation with x value of 0.06 (m) or 6 cm Special case : 1 mark for (anticlockwise moment =) $4.0x$ or (clockwise moment =) $[x + 0.03] \times 4.0$ seen anywhere on the script
	It is the same as the torque (of the couple) / same as (a)(i)	B1	Not : '0.12 (N m)'
b	Net / total / resultant force = 0	B1	Not : 'forces are balanced' or 'force up = force down'
	Net / total torque / moment = 0	B1	Allow : clockwise moment(s) = anticlockwise moment(s)
c(i)	M (density 45	C1	
	$\rho = \frac{1}{V} + \frac{1}{1000} = \frac{1}{0.600 \times 0.600 \times 0.050}$ density = 2.5 × 10 ³ (kg m ⁻³)	A1	Allow : 2 marks for a bald answer of 2.5×10^3 (kg m ⁻³)
c(ii)	clockwise moment = anticlockwise moment	C1	
	or (weight =) 45 × 9.81 / (weight =) 441.45		
	$(45 \times 9.81) \times 0.150 = F \times 0.600$ F = 110 (N)	C1 A1	Allow: 3 marks for a bald 110 (N) Allow: 2 marks for 11.25 – mass of 45 kg not changed to N
	Total	12	